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•
V A L U A T I O N

V ery often in the arena of 
business interruption claims 
and commercial damages, 
whether arising from breach 

of contract or tort, the valuation analyst 
has the need for a reliable short-term sales 
forecasting tool. Unlike sales forecasting 
for business valuation purposes, where 
time units are measured in years, it is 
just next year’s sales or a period of up 
to five–ten years until sales stabilize, 
commercial damages forecasts very often 
are measured in months, or even weeks. 

To accommodate this need, a body 
of knowledge has been developed that 
presents itself in two econometric 
formats—explanatory models and time 
series models. This article provides a 
step-by-step walk-through for building a 
time series regression model for a specific 
need using Excel. It is designed so that 
the reader can develop his or her own 
follow-along spreadsheet in order to 
learn by doing. We believe that valuation 
analysts will find it useful since most 
discussions of this topic are very abstract 
and unusable. 

EXPLANATORY MODELS: 
WHAT AND WHY

Explanatory models assume that one 
or more independent variables exhibit 
an explanatory relationship with the 

variable to be forecasted. For example, 
GDP is a function of monetary and fiscal 
policies, inflation, capital spending, 
imports, exports, and error. Notice that 
the relationship is not exact. There will 
always be changes in GDP that cannot 
be accounted for by the variables in 
the model, and thus some part of GDP 
changes will remain unpredictable. 
Therefore, we include the “error” term 
that represents random effects, beyond 
the variables in the model, which affect 
the GDP figures. 

Explanatory models can be applied 
to many systems—a national economy, a 
company’s market or a company’s sales. 
The purpose of the explanatory model is 
to capture the form of the relationship 
and use it to forecast future values of 
the forecast variable. According to 
explanatory forecasting, any change 
in inputs will affect the output of the 
system in a predictable way, assuming the 
explanatory relationship has not changed.

Unlike explanatory forecasting, time 
series forecasting treats the system as 
a black box and makes no attempt to 
capture the factors affecting its behavior. 
Therefore, a prediction of the future is 
based on past values of a variable, but not 
on explanatory variables that may affect 
the system. The objective of such time 
series forecasting methods is to discover 

the pattern and/or trend in the historical 
data series and extrapolate that pattern 
and/or trend into the future.

There are three main reasons for 
wanting to treat a system as a black box. 
First, the system may not be understood, 
and even if it were understood it might 
be extremely difficult to measure the 
relationships assumed to govern its 
behavior. Second, the main concern may 
be only to predict what will happen and 
not know why it happens. And third, 
changes in a time series may be reasonable 
proxies for the entire cluster of explanatory 
variables that drive the system through 
repeated transaction patterns over time.

For example, if the only purpose were 
to forecast future values of GDP without 
concern as to why a certain level of GDP 
will be realized, a time series approach 
would be appropriate. It is known that 
the magnitude of GDP does not change 
drastically from one month to another 
or even from one year to the other. Thus 
the GDP of next month will depend upon 
the GDP of the previous month and 
possibly that of the months before. This 
makes the job of forecasting next month’s 
GDP relatively easy since it requires no 
special input values as does explanatory 
forecasting for GDP. In fact, all we need 
to have is a reasonable amount of past 
GDP monthly history.
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This series of articles will utilize 
the application of several econometric 
models. We will apply two time series 
models—a regression-based model 
and an autoregressive integrated 
moving average (ARIMA) model—and 
one explanatory model to an actual 
business interruption situation where 
a discount department store retailer 
(Rollie’s Discount Department Store) 
suffered a fire loss during the months 
of November, December 2012 and 
January 2013. Our assignment was to 
determine the actual loss sustained by 
the insured for those months, which in 
turn, required us to predict what sales 
for those months would have been but 
for the casualty. We will demonstrate the 
applicability of the three models to the 
claim requirements by comparing and 

contrasting the forecast results for each, 
beginning with the regression-based time 
series model. Charts 6 through 11 do not 
include data from 2009 to 2011. To view 
that information please go to www.nacva.
com/examiner/13-SO-charts.asp 

INTRODUCTION TO THREE 
MODELS: REGRESSION-BASED 
TIME SERIES

Our historical data consists of a 
sequence of observations over time from 
November 2007 through October 2012, 
a period of sixty months. This sequence 
is called a time series, and the data set 
for Rollie’s Discount Department Store 
is shown on Exhibit 1. 

Some of the variation in a time series 
may be due to the variation in the number 
of days in each month. It is a good idea to 

adjust for this known source of variation 
to allow for study of other interesting 
features. Month length can have quite 
a large effect, since length can differ by 
as much as 10 percent ((31 – 28)/30). If 
this is not removed, it can affect seasonal 
patterns. As leap years come every four 
years [((365*3+366)/4) = 365.25], it 
is easily adjusted by multiplying each 
month’s sales by: ((365.25/12)/no. of days 
for that month). For example, November 
2001 would be adjusted as follows: 
164,330 * ((365.25/12)/30) = $164,330 * 
1.014583 = $166,726.

  The adjusted time series data set for 
Rollie’s is shown on Exhibit 2 (on page 9). 
Also shown on Exhibit 2 is the percentage 
change from the prior year, indicating an 
upward trend but whose rate of change 
is diminishing over time.

A B C D E F

1
EXHIBIT 1:  
ROLLIE’S DISCOUNT DEPARTMENT STORE—ACTUAL MONTHLY SALES: NOVEMBER 2007–OCTOBER 2012

2

3

4 2007/2008 2008/2009 2009/2010 2010/2011 2011/2012

5 November  $164,330  $213,999  $260,667  $246,244  $235,708 

6 December  264,400  291,119  311,513  305,520  308,677 

7 January  84,906  82,849  93,205  93,430  96,997 

8 February  75,390  82,485  88,736  86,226  88,157 

9 March  75,328  87,838  90,085  97,369  101,207 

10 April  77,102  94,337  109,497  113,309  111,176 

11 May  101,519  132,548  141,435  131,180  136,851 

12 June  114,315  132,788  145,444  150,194  170,377 

13 July  119,700  141,325  147,984  160,488  168,906 

14 August  130,284  158,056  158,522  171,851  184,999 

15 September  105,470  119,961  124,592  134,631  152,787 

16 October  143,399  172,229  174,212  194,255  178,025 

17

18 Total  $1,456,143  $1,709,534  $1,845,892  $1,884,697  $1,933,867 
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VISUALIZING THE DATA:
DEVELOPING TIME 
SERIES PLOTS

The single most important thing 
one can do when first exploring the 
data is to visualize the information via 
graphs. The basic features of the data, 
including patterns, trends, and unusual 
observations are most easily seen in 
graphic form. Additionally, graphs can 
suggest possible explanations for some 
of the variation in the data. 

The type of data will determine which 
type of graph is the most appropriate. For 
time series, the most obvious form is a 
time plot in which data are plotted over 
time. For Rollie’s, we graphed five-years 

of adjusted monthly sales data on Exhibit 
3 (page 10). This time plot immediately 
reveals seasonal behavior, which is a 
regular repeating pattern in the data. 

Along with seasonality, there is a 
systematic trend feature indicated by the 
fact that each year’s succeeding data points 
are slightly higher than the year before. 
Trend is the long-term sweep or general 
direction of movement in a time series. 
It reflects the net influence of long-term 
factors that affect the time series in a fairly 
consistent and gradual way over time. 

For seasonal time series data, it is 
often useful to produce a seasonal plot. 
Exhibit 4 (page 10) shows a seasonal 
plot of Rollie’s adjusted sales. This graph 

consists of the data plotted against the 
individual “seasons” in which the data 
are observed (in this case a “season” is 
a month.) This is similar to a time plot 
except that the data from each season 
are overlapped. A seasonal plot enables 
the underlying seasonal pattern to be 
seen more clearly, and also allows any 
substantial departures from the seasonal 
pattern to be easily identified. In our case, 
there are no departures from the overall 
pattern, and we can clearly see that each 
succeeding year’s sales are higher than 
the year before.

Our visual conclusion that there was 
a great deal of seasonality and a slight 
trend pattern is confirmed by an analysis 

A B C D E F

1
EXHIBIT 2:  
ROLLIE’S DISCOUNT DEPARTMENT STORE—ACTUAL MONTHLY SALES: NOVEMBER 2007–OCTOBER 2012

2

3

4 2007/2008 2008/2009 2009/2010 2010/2011 2011/2012

5 November  $166,726  $217,120  $264,468  $249,835  $239,145 

6 December  259,602  285,837  305,861  299,976  303,076 

7 January  83,365  81,346  91,514  91,735  95,237 

8 February  79,127  89,666  96,461  93,732  92,527 

9 March  73,961  86,244  88,450  95,602  99,371 

10 April  78,226  95,713  111,094  114,961  112,797 

11 May  99,677  130,143  138,869  128,800  134,368 

12 June  115,982  134,724  147,565  152,384  172,862 

13 July  117,528  138,761  145,299  157,576  165,841 

14 August  127,920  155,188  155,646  168,733  181,642 

15 September  107,008  121,710  126,409  136,594  155,015 

16 October  140,797  169,104  171,051  190,730  174,795 

17

18 Total  $1,449,921  $1,705,555  $1,842,686  $1,880,659  $1,926,676 

19

20  % Change from Prior Year 17.6% 8.0% 2.1% 2.4%
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of variance (ANOVA), the results of 
which are shown on Exhibit 5 (page 11), 
which summarizes the degree of trend, 
seasonality, and noise. The ANOVA 
calculations are as follows: First, we 
computed the grand mean (the mean 

of all the data points). Then we computed 
the sum of squared differences between 
each data point and the grand mean 
(total variance). Next, we computed 
the trend variance:  the sum of squared 
differences between the average value for 

each year and the grand mean. The ratio 
[(12*trend variance)/ (total variance)] 
is then defined as the proportion of 
variance due to trend.

The next step is to compute the 
seasonal variance: the sum of squared 
differences between the average value 
for each month and the grand mean. The 
ratio [(number of years of data*seasonal 
variance)/ (total variance)] is defined 
as the proportion of variance due to 
seasonality. Since the proportion must 
add up to 1.0, the proportion of noise 
is taken to be [1.0 – (proportion due to 
trend + proportion due to seasonality)]. 
The implication is that for the business 
interruption claim at hand we would 
need to account for a seasonal pattern 
as well as a trend pattern in our 
statistical model. 

We next must choose a statistical 
model that will account for both 
seasonality and a trend pattern, albeit 
one that diminishes over time. Because 
we have a non-stationary time series, 
(since there is some upward trend in the 
data over time) forecasting techniques 
such as the moving average, weighted 
moving average, and exponential 
smoothing these techniques use 
some average of the previous values 
to forecast future values. They will 
consistently underestimate the predicted 
values. Therefore, we need to consider 
a technique that is appropriate for a 
non-stationary time series that involves 
an upward trend in the data over time 
coupled with a seasonal pattern.

Regression analysis is such a 
technique. We can build a regression 
model of a time series if data are available 
for the independent variables that 
account for the systematic movements of 
the time series. Even if the independent 
variables don’t have a causal relationship 
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with the time series, some independent variables might 
have a predictive relationship with the time series. The 
behavior of a predictor variable might be correlated with 
that of the time series in a way that helps us forecast future 
values of the time series. 

SELECTING INDEPENDENT VARIABLES
As mentioned earlier, trend is the long-term sweep or 

general direction of movement in a time series that reflects 
changes in the data over time. The mere passage of time 
does not cause the trend in the time series. However, like 
the consistent passage of time, the trend of a time series 
reflects the steady upward or downward movement in 
the general direction of the series. Thus, time itself might 
represent a predictor variable that could be useful in 
accounting for the trend in a time series.

SELECTING THE TREND LINE
If we were to superimpose a linear trend line on the time 

plot graph on Exhibit 3, we would see that while the line 
accounted for the upward trend in the data, the actual values 
would not be scattered randomly around the trend line. Since 
this scatter is a basic requirement for a good fitting regression-
derived trend line, we can infer that a linear trend model might 
not be appropriate for this data.

As an alternative, a curved, or curvilinear, trend line will 
produce a better fit with the data, as we need to account 
for an upward trend that is diminishing over time. A model 
that will serve this purpose is a quadratic (or second-degree 
polynomial) model where time is the first degree and time 
squared is the initial second degree of the regression 
equation. Later we will see how we can modify the second 
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Toll Free (866) 632-2467
    www.nebbi.org

1.  Rely on the word of the owner; or 
2.  Rely on the depreciation schedule; or 
3.  Rely on book value; or 
4.  Rely on a guess or ignore the equipment; ;or
5.  Rely on the word of an auctioneer or dealer who
     is not Certified and probably has a hidden agenda. 

These 5 methods are the biggest mistakes
in determining equipment values.  If you
rely on these methods, your values will
NOT hold up to scrutiny with lenders,
IRS, courts, attorneys, and others. 

If you want to reduce the risk of liability, expand your
business, and deliver defensible equipment values,
isn’t it time you find out more? Find out why others 
who have walked in your shoes have added the
CMEA credential behind their name!

A defensible substantiated value is not delivered if you...

Here’s the bottom line:  YOU have a choice on
the data you rely upon to determine value!
If you or someone in your office is a Certified
Machinery & Equipment Appraiser (CMEA), you will
deliver defensible equipment values that hold up
under scrutiny.

What Comes Out Of Your Valuation...
DEPENDS On What Goes In!
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degree to be any exponent that helps 
produce a better fitting model.

SELECTING AND CALCULATING 
SEASONAL INDICES

Now that we have determined how we 
will account for trend, we need to find an 
effective way of modeling seasonal effects 
in our time series. A simple way to do 
this is by use of “dummy”, or indicator, 
variables for each of the months in a year. 
The downside to this method is that it 
uses up ten more degrees of freedom than 
necessary, hence we will choose another 
approach known as seasonal indices, 
which while more complex to develop, 
saves those precious degrees of freedom, 
which, ceteris paribus, allows for a smaller 
standard error of the estimate.

Seasonal indices reflect the average 
percentage by which observations in 
each “season” (month) differ from their 
projected trend values. For example, 
Rollie’s sales in December are above the 
value predicted using a trend model, 
while January’s sales fall below the value 
predicted using a trend model. Thus, 
if we can determine seasonal indices 
representing the average amount by which 
observations in a given month fall above 
or below the trend line, we can multiply 
our trend projections by these amounts 
and increase the accuracy of our forecasts.

Before we calculate seasonal indices 
for a quadratic trend model, we need to 
set up and validate the model. Exhibit 6 
(page 13) shows the initial set up of the 
quadratic trend model for Rollie’s sixty 
months of adjusted sales (years 2009–
2011, rows 18–53 have been hidden for 
presentation purposes; to see these years 
(please go to the NACVA website www.
nacva.com/examiner/13-SO-charts.asp 
to view these charts). If the reader wishes 
to replicate our computations in a follow-

along spreadsheet, the formula for cell F4 
is: =TREND (($E$4:$E$63, $C$4:$D$63, 
C4:D4), which is then copied down to and 
through row 63. 

We need to evaluate the accuracy of 
this model by seeing how well it explains 
past behavior of the time series variables. 
A visual, non-quantitative method, which 
we will introduce later, is to construct line 
plots that show the actual data versus the 
values predicted by the model. Several 
more formal quantitative measures of 
the accuracy of time series modeling 
techniques are mean absolute deviation 
(MAD), the mean absolute percentage 
error (MAPE), the mean square error 
(MSE), and the root mean square error 
(RMSE). We have chosen the MSE measure 
because it is somewhat easier to calculate 
then the other metrics. The formula for 
cell F65 is:=SUMXMY2(F4:F63,E4:E63)/
COUNT(F4:F63), and it computes an MSE 
of 3,549,850,132, which is an exceedingly 
large number as the trend line we have 
calculated only traverses the mid-point 
of the data set, and does not account 
for seasonal fluctuations. So, we need to 
include seasonal indices in the model.

The goal in developing seasonal indices 
is to determine the average percentage 
by which observations in each “season” 
(month) differ from the value predicted 
for them using the particular trend model 
selected. To accomplish this, in column 
G of Exhibit 7 (page 14) we calculate the 
ratio of each actual value (in column E) to 
its corresponding projected trend value 
shown (in column F) as: =E4/F4, and then 
copy this formula down to and through 
row 63. The results are shown on Exhibit 7. 

The value in cell G4 indicates that 
the actual value in time period 1 was 
135.6 percent of (or approximately 35.6 
percent larger than) its estimated trend 
value. The value in cell G6 indicates that 

the actual value in time period 3 was 66.5 
percent of (or approximately 33.5 percent 
smaller than) its estimated trend value. 
The remaining values in column G have 
similar interpretations.

On Exhibit 8 (page 15), in column K, 
we obtain the seasonal index for each 
month by computing the average of the 
values in column G on a month-by-month 
basis. For example, the seasonal index 
for month 11 equals the average of the 
cells in G4, G16, G28, G40, and G52. The 
seasonal index for month 12 equals the 
average of the values in cells G5, G17, 
G29, G41, and G53. Similar computations 
are required to calculate seasonal indices 
for months 1–10. We can use separate 
AVERAGE () functions for each month 
to compute these averages. However, for 
large data sets, such an approach would 
be tedious and prone to error. Thus, the 
averages shown in cells H4 through K5 are 
calculated as: =SUMIF ($B$4$B$63, J4, 
$G$4:$G$63)/COUNTIF ($B$4:$B$63, 
J4), which is then copied down and 
through row 63.  

The seasonal index for month 1 
shown in cell K4 on Exhibit 8 indicates 
that, on average, the actual sales value 
in January of any given year will be 61.4 
percent of (or 38.6 percent smaller than) 
the estimated trend value for the same 
time period. Similarly, the seasonal index 
for month 8 shown in cell K11 indicates 
that, on average, the actual sales value in 
August will be 105.7 percent of (or 5.7 
percent larger than) the estimated trend 
value for the same period. The seasonal 
indices for all the other months have 
similar interpretations.

REFINING THE INITIAL 
QUADRATIC TREND MODEL

We can use the calculated seasonal 
indices to refine or adjust the original 
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A B C D E F

1 EXHIBIT 6: QUADRATIC TREND MODEL

2 TIME TIME ADJUSTED QUADRATIC
3 YEAR MONTH PERIOD PERIOD2 SALES TREND

4 2007 11 1 1  166,726  122,962 

5 12 2 4  259,602  124,195 

6 2008 1 3 9  83,365  125,405 

7 2 4 16  79,127  126,594 

8 3 5 25  73,961  127,760 

9 4 6 36  78,226  128,905 

10 5 7 49  99,677  130,027 

11 6 8 64  115,982  131,127 

12 7 9 81  117,528  132,206 

13 8 10 100  127,920  133,262 

14 9 11 121  107,008  134,296 

15 10 12 144  140,797  135,309 

16 11 13 169  217,120  136,299 

17 12 14 196  285,837  137,267 

54 2012 1 51 2601  95,237  157,603 

55 2 52 2704  92,527  157,734 

56 3 53 2809  99,371  157,844 

57 4 54 2916  112,797  157,931 

58 5 55 3025  134,368  157,995 

59 6 56 3136  172,862  158,038 

60 7 57 3249  165,841  158,059 

61 8 58 3364  181,642  158,058 

62 9 59 3481  155,015  158,035 

63 10 60 3600  174,795  157,990 

64

65 MSE 3,549,850,132 

quadratic trend estimates shown on Exhibit 6. This is accomplished in column H 
of Exhibit 9 (page 16) as: =F4*VLOOKUP (B4, $J$4:$K$15, 2), which is then copied 
down and through row 63. This formula takes the estimated quadratic trend value for 
each time period and multiplies it by the appropriate seasonal index for the month 
in which it occurs. The trend estimates for month one observations are multiplied 
by 61.4 percent; the trend estimates for month two are multiplied by 62.2 percent, 

and so on for months three through 12. 
Before we create a graph showing the 
actual sales data versus the seasonal 
forecast calculated in column H, we 
need to refine the seasonal indices. Cell 
H65 calculates MSE to be 89,444,067, 
an increase of 97.5 percent in accuracy 
from the pure quadratic trend model 
shown on Exhibit 6.

REFINING THE 
SEASONAL INDICES

While the approach for calculating 
seasonal indices illustrated in Exhibit 
9 has considerable intuitive appeal, 
it is important to note that these 
seasonal adjustment factors are not 
necessarily optimal. We can refine 
the seasonal adjustment factors using 
Excel’s Solver add-in to simultaneously 
determine the optimal values of the 
seasonal indices and the slope and 
intercept parameters of the quadratic 
trend model. On Exhibit 10 (page 
17), cells K18, K19, and K20 on your 
worksheet (K54, K55, and K56 on 
the truncated demonstration sheet) 
are used to represent, respectively, 
the estimated values of the intercept, 
the time coefficient and the time2 

coefficient in the quadratic trend 
model. Label the cells as indicated on 
Exhibit 10, and enter, as placeholders, 
the amounts 1,000, 500 and 100 in each 
cell. Change the formula in cell F4 to: 
$K$18+$K$19*C4+$K$20*D4, and 
copy it down to and through row 63. 
Next, we will set up Solver to find the 
optimal values for the trend parameters 
in cells K18–K20 (K54, K55, and K56 
on the truncated demonstration sheet) 
and seasonal parameters in cells 
K4:K15 that will minimize the MSE.

On the ribbon, click on the Data tab, 
and then to the far right of the ribbon, 
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A B C D E F G

1 EXHIBIT 7: CALCULATING ACTUAL VALUE TO PROJECTED TREND VALUE

2 ADJUSTED QUADRATIC ADJUSTED AS
3 YEAR MONTH TIME PERIOD TIME PERIOD2 SALES TREND A % OF TREND

4 2007 11 1 1  166,726  122,962 135.6%

5 12 2 4  259,602  124,195 209.0%

6 2008 1 3 9  83,365  125,405 66.5%

7 2 4 16  79,127  126,594 62.5%

8 3 5 25  73,961  127,760 57.9%

9 4 6 36  78,226  128,905 60.7%

10 5 7 49  99,677  130,027 76.7%

11 6 8 64  115,982  131,127 88.4%

12 7 9 81  117,528  132,206 88.9%

13 8 10 100  127,920  133,262 96.0%

14 9 11 121  107,008  134,296 79.7%

15 10 12 144  140,797  135,309 104.1%

16 11 13 169  217,120  136,299 159.3%

17 12 14 196  285,837  137,267 208.2%

54 2012 1 51 2601  95,237  157,603 60.4%

55 2 52 2704  92,527  157,734 58.7%

56 3 53 2809  99,371  157,844 63.0%

57 4 54 2916  112,797  157,931 71.4%

58 5 55 3025  134,368  157,995 85.0%

59 6 56 3136  172,862  158,038 109.4%

60 7 57 3249  165,841  158,059 104.9%

61 8 58 3364  181,642  158,058 114.9%

62 9 59 3481  155,015  158,035 98.15

63 10 60 3600  174,795  157,990 110.6%

click on Solver and select cell H65 to be 
minimized by changing cells K4:K15 and 
cells K18:K20 (K54, K55, and K56 on the 
truncated demonstration sheet) while 
constraining cell K16 to a value of 1 (or 100 
percent). This constraint is necessary because 
if the seasonal indices do not average to 100 
percent, there is some upward or downward 
bias in the trend component of the model. 

Click Solve, and the results are shown on 
Exhibit 10. Notice that the MSE has been 
reduced to 82,530,189, an improvement in 
model accuracy of 7.7 percent over the MSE 
of 89,444,067 shown on Exhibit 9. 

What we have accomplished here is 
to minimize MSE, which is the average 
distance or deviation between adjusted sales 
and the seasonal forecast by using Excel’s 

Solver optimizer add-in to change the two 
slope and intercept values of the quadratic 
trend line. At the same time, we adjusted the 
twelve seasonal indices while constraining 
them to still average 100 percent of monthly 
sales. Solver works by iterating possible 
solutions until it arrives at a combination 
of slope values, intercept value, and twelve 
seasonal indices that minimize MSE.
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1 EXHIBIT 8: CALCULATING THE SEASONAL INDEX

2 TIME TIME ADJUSTED QUADRATIC ADJUSTED AS SEASONAL

3 YEAR MONTH PERIOD PERIOD2 SALES TREND A % OF TREND MONTH INDEX

4 2007 11 1 1  166,726  122,962 135.6% 1 61.4%

5 12 2 4  259,602  124,195 209.0% 2 62.2%

6 2008 1 3 9  83,365  125,405 66.5% 3 60.7%

7 2 4 16  79,127  126,594 62.5% 4 69.6%

8 3 5 25  73,961  127,760 57.9% 5 85.7%

9 4 6 36  78,226  128,905 60.7% 6 97.5%

10 5 7 49  99,677  130,027 76.7% 7 97.5%

11 6 8 64  115,982  131,127 88.4% 8 105.7%

12 7 9 81  117,528  132,206 88.9% 9 86.3%

13 8 10 100  127,920  133,262 96.0% 10 112.8%

14 9 11 121  107,008  134,296 79.7% 11 158.1%

15 10 12 144  140,797  135,309 104.1% 12 202.5%

16 11 13 169  217,120  136,299 159.3%

17 12 14 196  285,837  137,267 208.2%

54 2012 1 51 2601  95,237  157,603 60.4%

55 2 52 2704  92,527  157,734 58.7%

56 3 53 2809  99,371  157,844 63.0%

57 4 54 2916  112,797  157,931 71.4%

58 5 55 3025  134,368  157,995 85.0%

59 6 56 3136  172,862  158,038 109.4%

60 7 57 3249  165,841  158,059 104.9%

61 8 58 3364  181,642  158,058 114.9%

62 9 59 3481  155,015  158,035 98.1%

63 10 60 3600  174,795  157,990 110.6%

FURTHER OPTIMIZING 
THE MODEL

While this is an improvement over 
the previous model, we can optimize the 
model even further by transforming by 
exponentiation the dependent variable, 
sales, and modifying the exponent of the 
second degree of the quadratic model, 
time2. We do this because very often 

time series data are (1) rarely linear, 
(2) infrequently homogeneous as to 
variance, and (3) not often distributed 
normally, or even, symmetrically. 
Fortunately, these three problems 
can be fixed with one procedure that 
involves the transformation of either or 
both the independent and dependent 
variables. This is so because data that 

is not normally distributed is also 
often neither linear nor homogeneous. 
Thus, transformation provides a simple 
way both to fix statistical problems 
(non-symmetrical, non-normal and 
heterogeneous distributions), and to 
better fit curves to data (curvilinear 
regression). To accomplish this we need 
to modify Exhibit 10 and then once more 
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1 EXHIBIT 9: ESTIMATED QUADRATIC TREND VALUE FOR EACH TIME PERIOD

2 TIME TIME ADJUSTED QUADRATIC ADJUSTED AS SEASONAL SEASONAL

3 YEAR MONTH PERIOD PERIOD2 SALES TREND A % OF TREND FORECAST MONTH INDEX

4 2007 11 1 1  166,726  122,962 135.6%  194,359 1 61.4%

5 12 2 4  259,602  124,195 209.0%  251,496 2 62.2%

6 2008 1 3 9  83,365  125,405 66.5%  77,025 3 60.7%

7 2 4 16  79,127  126,594 62.5%  78,779 4 69.6%

8 3 5 25  73,961  127,760 57.9%  77,520 5 85.7%

9 4 6 36  78,226  128,905 60.7%  89,761 6 97.5%

10 5 7 49  99,677  130,027 76.7%  111,446 7 97.5%

11 6 8 64  115,982  131,127 88.4%  127,904 8 105.7%

12 7 9 81  117,528  132,206 88.9%  128,840 9 86.3%

13 8 10 100  127,920  133,262 96.0%  140,898 10 112.8%

14 9 11 121  107,008  134,296 79.7%  115,946 11 158.1%

15 10 12 144  140,797  135,309 104.1%  152,615 12 202.5%

16 11 13 169  217,120  136,299 159.3%  215,439 

17 12 14 196  285,837  137,267 208.2%  277,968 

54 2012 1 51 2601  95,237  157,603 60.4%  96,801 

55 2 52 2704  92,527  157,734 58.7%  98,158 

56 3 53 2809  99,371  157,844 63.0%  95,774 

57 4 54 2916  112,797  157,931 71.4%  109,973 

58 5 55 3025  134,368  157,995 85.0%  135,417 

59 6 56 3136  172,862  158,038 109.4%  154,153 

60 7 57 3249  165,841  158,059 104.9%  154,035 

61 8 58 3364  181,642  158,058 114.9%  167,114 

62 9 59 3481  155,015  158,035 98.1%  136,441 

63 10 60 3600  174,795  157,990 110.6%  178,197 

64

65 MSE 89,444,067 

employ Excel’s Solver add-in to optimize 
the transformation procedure by again 
minimizing MSE.

Set up Exhibit 11 (page 18) by copying 
columns A, B, and C from Exhibit 10. 
Enter the labels Sales Exp and Time2 Exp 
and the placeholder amounts of 2 and 1 

in cells J18:K19 (J54:K55 on the truncated 
demonstration sheet). In cell D4 enter the 
formula: =C4^$K$19 and copy it down to 
and through row 63. In column E enter the 
appropriate optimized seasonal index from 
cells K4:K15 on Exhibit 10. In column F 
bring over adjusted sales from column E 

on Exhibit 10. In cell G4 enter the formula: 
=F4^$K$18 and copy it down and through 
row 63. In cell H4 enter the formula: 
=TREND ($G$4:$G$63, $C$4:$E$63, 
C4:E4) ^ (1/$K$18) and copy it down to 
and through row 63. Enter the MSE formula 
in cell H65, with cells H4:H63 and F4:F63 
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1 EXHIBIT 10: TRANSFORMATION OF INDEPENDENT AND DEPENDENT VARIABLES

2 TIME TIME ADJUSTED QUADRATIC ADJUSTED AS SEASONAL SEASONAL

3 YEAR MONTH PERIOD PERIOD2 SALES TREND A % OF TREND FORECAST MONTH INDEX

4 2007 11 1 1  166,726  117,973 141.3%  188,122 1 61.0%

5 12 2 4  259,602  119,529 217.2%  240,542 2 61.9%

6 2008 1 3 9  83,365  121,056 68.9%  73,840 3 60.7%

7 2 4 16  79,127  122,553 64.6%  75,821 4 70.1%

8 3 5 25  73,961  124,021 59.6%  75,292 5 85.6%

9 4 6 36  78,226  125,460 62.4%  87,902 6 97.9%

10 5 7 49  99,677  126,870 78.6%  108,645 7 97.6%

11 6 8 64  115,982  128,250 90.4%  125,534 8 105.7%

12 7 9 81  117,528  129,601 90.7%  126,470 9 86.4%

13 8 10 100  127,920  130,922 97.7%  138,446 10 112.5%

14 9 11 121  107,008  132,215 80.9%  114,176 11 159.5%

15 10 12 144  140,797  133,478 105.5%  150,103 12 201.2%

16 11 13 169  217,120  134,711 161.2%  214,813 Average 100.0%

17 12 14 196  285,837  135,915 210.3%  273,519 

54 2012 1 51 2601  95,237  159,849 59.6%  97,503 Intercept 116,386.98 

55 2 52 2704  92,527  159,939 57.9%  98,950 Slope 1  1,600.22 

56 3 53 2809  99,371  159,999 62.1%  97,134 Slope 2  (14.67)

57 4 54 2916  112,797  160,030 70.5%  112,123 

58 5 55 3025  134,368  160,032 84.0%  137,044 

59 6 56 3136  172,862  160,004 108.0%  156,615 

60 7 57 3249  165,841  159,947 103.7%  156,082 

61 8 58 3364  181,642  159,860 113.6%  169,046 

62 9 59 3481  155,015  159,744 97.0%  137,950 

63 10 60 3600  174,795  159,599 109.5%  179,478 

64

65 MSE 82,530,189 

as the necessary elements. Next, click on 
Solver and select cell H65 to be minimized 
by changing cells K18:K19, and then click 
Solve. Your results should look like Exhibit 
11. Notice that the MSE has been reduced to 
72,169,758, an improvement over the model 
on Exhibit 10 of 14.4 percent. We can now 

use the results of this model to produce a line 
plot graph on Exhibit 12 (page 19) showing 
adjusted sales versus forecasted sales.

A CONCLUDING LINE PLOT
From Exhibit 12’s line plot we can see 

that the forecasted values match up very 

closely with the adjusted sales. In fact, the 
average distance between the adjusted and 
forecasted data points is only $8,793, which 
translates into a coefficient of variation of 
only 6 percent. This means that if we were 
to use this model to predict sales for period 
61 as shown on Exhibit 13, we could be 95 
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1 EXHIBIT 11: SALES EXP AND TIME2

2 TIME TIME SEASONAL ADJUSTED EXPONENTIATED QUADRATIC SEASONAL

3 YEAR MONTH PERIOD PERIOD2 INDEX SALES SALES TREND MONTH INDEX

4 2007 11 1  1.000 159.5%  166,726  42,693  169,836 1 61.0%

5 12 2  0.466 201.2%  259,602  63,223  260,484 2 61.9%

6 2008 1 3  0.298 61.0%  83,365  23,091  64,771 3 60.7%

7 2 4  0.217 61.9%  79,127  22,047  70,024 4 70.1%

8 3 5  0.170 60.7%  73,961  20,766  71,106 5 85.6%

9 4 6  0.139 70.1%  78,226  21,824  85,694 6 97.9%

10 5 7  0.117 85.6%  99,677  27,056  108,840 7 97.6%

11 6 8  0.101 97.9%  115,982  30,946  127,528 8 105.7%

12 7 9  0.089 97.6%  117,528  31,311  128,265 9 86.4%

13 8 10  0.079 105.7%  127,920  33,754  141,058 10 112.5%

14 9 11  0.071 86.4%  107,008  28,813  114,287 11 159.5%

15 10 12  0.065 112.5%  140,797  36,750  152,681 12 201.2%

16 11 13  0.059 159.5%  217,120  53,958  223,758 Average 100.0%

17 12 14  0.055 201.2%  285,837  68,857  289,274 

54 2012 1 51  0.013 61.0%  95,237  25,984  104,254 Sales Exp  0.887 

55 2 52  0.013 61.9%  92,527  25,328  106,055 Time2 Exp  (1.102)

56 3 53  0.013 60.7%  99,371  26,982  105,016 

57 4 54  0.012 70.1%  112,797  30,191  118,783 

58 5 55  0.012 85.6%  134,368  35,259  141,696 

59 6 56  0.012 97.9%  172,862  44,083  160,151 

60 7 57  0.012 97.6%  165,841  42,492  160,323 

61 8 58  0.011 105.7%  181,642  46,063  172,966 

62 9 59  0.011 86.4%  155,015  40,023  145,148 

63 10 60  0.011 112.5%  174,795  44,520  184,165 

64

65 MSE 72,169,758 
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percent confident that the actual level of 
sales observed would fall somewhere in the 
range from $238,682 to $273,854 ($256,268 
± $17,586). 

SUMMARY OUTPUT 
AND CONCLUSION

Exhibit 13 (page 20) presents Excel’s 
summary output for its regression tool, and 

we also show the computations for the ex-
pected sales during the three-month period 
of interruption, including the conversion of 
sales back to actual days in a month. 

Also shown is a description of the 
regression equation itself and how it works to 
produce a forecasted value for any particular 
month. The regression statistics are all 
excellent, and the absolute t-stats of the x 

coefficients are all way above 2, all of which 
indicates, along with the very low standard 
error of the estimate, an extremely good 
fitting model with highly accurate results. 
The end result can be seen on Exhibit 14 
that shows the three-month prediction in 
relation to the sixty-month’s of history on 
which it is based.

We can conclude that this regression 
time series model is a succinct method of 
predicting future values of a time series vari-
able when seasonal and trend patterns are 
present. The goal was to demonstrate how a 
model can be fitted to the past behavior of a 
time series and then be used to predict future 
values using statistical techniques that can be 
accomplished using Excel. In future articles 
we will discuss and present the application of 
Auto Regressive Integrated Moving Average 
(ARIMA) models and explanatory forecast-
ing models to Rollie’s sales history. 

Mark G. Filler, CPA/
ABV, CBA, AM, CVA, 
leads Filler & Associates’ 
litigation and claims 
support practice in 
Portland, ME. He has 
testified over 100 times 

on valuation and damages matters. He is 
past chairman of the Editorial Board of The 
Value Examiner. E-mail: mfiller@filler.com.

James A. DiGabriele, PhD, 
DPS, CPA/ABV/CFF, 
CVA, is an accounting 
professor at Montclair 
State University. He is also 
the managing director of 
DiGabriele, McNulty, 

Campanella & Co., LLC, in Fairfield, NJ, 
an accounting firm specializing in forensic/
investigative accounting and litigation 
support. He has qualified as an expert 
in forensic accounting in federal and 
state courts. E-mail: digabrielej@mail.
montclair.edu.
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EXHIBIT 12: THREE MONTH PREDICTION 
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EXHIBIT 13: SUMMARY OUTPUT

REGRESSION STATISTICS

TRANSFORMED BACK-TRANSFORMED

0.990 

 0.980 

 0.979 

 8,793 

5.99%

 60 

Multiple R  0.990 

R Square  0.980 

Adjusted R Square  0.979 

Standard Error  2,017 

Coefficient of Variation 5.33%

Observations  60 

ANOVA

DF SS MS F SIGNIFICANCE F

Regression 3 11,021,252,254 3,673,750,751  903 0.0

Residual 56  227,929,305  4,070,166 

Total 59 11,249,181,559 

 

COEFFICIENTS

STANDARD 

ERROR

 

T STAT

 

P-VALUE

 

LOWER 95%

 

UPPER 95%

Intercept  925.379  893.368  1.036  0.305  (864.250)  2,715.009 

Time Period  136.431  17.582  7.760  0.000  101.209  171.652 

Time Period-1.10178  (11,037.043)  2,182.390  (5.057)  0.000 (15,408.893) (6,665.194)

Seasonal Factor  33,470.974  659.070  50.785  0.000  32,150.700  34,791.248 

PREDICTION

Regression Equation: Forecasted Monthly Sales = (925.379 + Time Period x 136.431 + Time Period-1.10178 x -11037.043 

+Seasonal Factor x 33470.974)(1/.886701)

 

 

MONTH

 

 

INTERCEPT

 

TIME 

PERIOD

TIME  

PERIOD 

-1.10178

 

SEASONAL 

FACTOR

 

TRANSFORMED 

FORECAST

 

BACK-TRANSFORMED 

FORECAST(1/.886701)

 

 

RECONVERTED

Nov-12 925.379 61 0.011 159.46%  62,502  256,268  252,585 

Dec-12 925.379 62 0.011 201.24%  76,625  322,458  328,417 

Jan-13 925.379 63 0.010 61.00%  29,822  111,243  113,298 

Total  694,300 
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GLOSSARY

MSE (Mean Squared Error) · The sum of the squared difference between the actual response and the predicted 
response divided by the error degrees of freedom. Measures the degree of 
dispersion in the data set.

Degrees of freedom · Number of data points less the number of regression parameters, including the 
constant.

SEE (Standard Error of the 
Estimate)

· The square root of the MSE. States the degree of dispersion in terms of the original 
response, or data set.

t statistic · The x coefficient value divided by its standard error. Indicates how many 
standard deviations the x coefficient is from zero.

p value · Indicates if the x coefficient is statistically significant at a particular level, i.e., if it is 
significantly different from zero.

COV (Coefficient of Variation) · The SEE divided by the average of the dependent variable. Allows for comparability 
of the degree of dispersion among differing data sets, models, etc. 

r2 · The degree of explanatory power of the model. Takes a value between 0 and 1.

F statistic · Indicates if the model as a whole is statistically significant.

Grand mean · The mean of several subgroups; in this case the average of the twelve monthly 
averages.

Root Mean Square Error (RMSE) · A measure of forecast accuracy that has the same advantage of the MSE in that a 
penalty is assessed to large forecast errors, but, the value of RMSE is comparable in 
magnitude to other commonly used statistics for forecast accuracy.

Mean Absolute Percentage Error 
(MAPE)

· A measure of forecasting accuracy that is used whenever knowledge of the size of 
the forecast error in relation to the size of the variable to be forecast is important.

Mean Percentage Error (MPE) · A measure of forecast accuracy that is used whenever the forecaster is interested in 
determining whether the forecast error is biased.

Mean Absolute Deviation (MAD) · A measure of forecasting accuracy that is used whenever the forecaster wishes to 
obtain a measure of the forecast error that is expressed in magnitudes comparable 
to the original observations.

Dummy Variable · A variable that indicates the category a given observation is in. For example, the 
category January would be coded 1, and all other months would be coded 0, and so 
on for each of the other months.




