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I first address the initial part of an earlier Hawkins article where he demonstrates the 
use of regression analysis to determine a subject company's value. Herein, it is shown 
that even a simple, basic application of regression analysis requires more fundamental 
analysis than Hawkins put forth. My analysis presents both flaws in the data sets and 
a conceptual flaw in the use of revenue alone to predict value. I propose and demon­
strate corrective methodologies for both of these errors. I then deal with the use of 
regression analysis to determine the amount of active versus passive appreciation 
in the growth in value of a company during a marriage. I explain why this is a misuse 
of regression analysis and demonstrate better regression techniques for forecasting 
revenues using time trend and housing starts as independent variables, and, at the 
same time, I transform the model to correct for the serial correlation problem raised in 
Trout's Jetter to the editor. 

Introduction 

In a well-presented article in a previous issue of the 
Business Valuation Review, 1 author George B. Hawkins 
lays out nicely the basic precepts of regression analysis 
and their application in a straightforward setting and in an 
easy to understand format. As this current article will 
refine, extend, and elaborate on Hawkins' article, the 
reader is requested to read or refer to it, as well as the 
letter to the editor in a subsequent issue of this joumal,2 

before continuing on. 
While regression analysis (RA) is the ideal tool to 

explore relationships between and among variables, it has 
two other uses and a major benefit. Those uses are: 

• It uses one or more input variables to predict the 
value of an output variable. 

• It determines which input variables are the best 
predictors for a particular output variable. 

The major benefit of choosing RA over an average or 
median valuation multiple is the reduction in dispersion 
obtained by RA. Dispersion, or variation about the mean 
or trend line, needs to be minimized if the accuracy of our 
prediction is to be contained within a more narrow rather 

1Hawkins, George B. "Regression Analysis in Valuation Engagements", 
Business Valuation Review 27(1) (Spring 2008). 
2Robert R. Trout, "Letter to the Editor", Business Valuation Review 27(3) 
(Fall 2008). 
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than a broader range. This is an important consideration 
since valuation is always considered to be a range,3 and, 
consequently, we would like that range to be as srriall 
as possible. Of the three possible ways of developing 
a valuation multiple (mean, median, and RA), RA will 
consistently deliver more accurate predictions than its 
rivals. 

To compare the degree of variation that exists among 
competing procedures, we can use a common-size metric 
known as the coefficient of variation (CoV), which is a 
ratio that is computed by dividing the standard deviation 
by the mean. If we use the data sets in Table 1 of the 
Hawkins' article, we can select the average price/ 
Earnings Before Interest, Taxes, Depreciation and Amor­
tization (EBITDA) ratio (9.66) and the average price/ 
revenue ratio (.86). By multiplying each of these ratios 
against the appropriate EBITDA and revenue amounts, 
we will derive 11 predicted prices for each category. By 
averaging the 11 prices so attained and then calculating 
their standard deviation, we will find the inputs necessary 
to compute the Co V. For the two regression models 
presented in the Hawkins article, the CoV is calculated 
by dividing each standard error4 of the estimate5 (SEE) 

3This is true even if the client or the trier of fact wants or needs a discrete 
point estimate of value. 
The summary output in Hawkins' Figure 3 is incorrect because it reflects 

the use of only nine of the eleven available observations. The SEE for the 
eleven observations is 13,563.439. 
5This is a measure of the accuracy of the prediction obtained from a regres­
sion model. It measures the amount of scatter, or variation, in the actual data 
around the fitted regression line. Think of it as the standard deviation of the 
trend line. 
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Table 1 
Comparative Dispersion Metrics 

Price/revenue Price/EBITDA RA-revenue RA-EBITDA 

Average price 
Standard dev. 
CoV 

28,728 
21,842 

76.0% 

39,522 
38,668 

97.8% 

by the average of price paid. The results of the four 
computations are shown in Table 1 here. 

The conclusion to be drawn from this table is 
obvious-RA reduces variation. Would you rather say 
that you are 68% confident that your point estimate of 
value is ABC, plus or minus 76%, or plus or minus 15%? 
Later in this article, we will explore procedures such as 
outlier removal and transformations that will reduce the 
Co V even further. 

The determination of value as a function of revenue is 
a generally accepted valuation method, whether one uses 
average or median multiples or RA. However, a noted 
author and teacher6 has written that the use of revenue 
alone without controlling for profit margin can lead to 
misleading valuations. For example, should two compa­
nies, each with $1,000,000 in revenue but with operating 
profits of $150,000 and $75,000, respectively, sell for the 
same multiple of revenue? Since one wouldn't think so, 
we need to employ a model that will control, or account 
for, the differences in profitability while still recognizing 
the level of sales that has been obtained. 7 

The RA model that will accomplish this uses the ratio 
of EBITDNrevenue as its input, or independent, or x 
variable, and price/revenue as its output, or dependent, 
or y variable. By converting our variables from real 
numbers to rational numbers (ratios), we have in effect 
transformed the data, which in tum requires us to com­
pute our goodness-of-fit metrics in natural language or 
space by ultimately back-transforming our results. Let's 
walk through this process. The setup data for the ratio 
model is shown on Table 2. The summary output of the 
regression is found on Table 3. To predict price paid, we 
add the intercept to the product of the EBITDNrevenue 
coefficient and the EBITDNrevenue ratio. This results 
in a revised revenue multiple, which, when multiplied 
by revenue, results in the predicted price. For example, 

6Aswath Damodaran, Valuation: Tools and Techniques for Determining 
the Value of Any Asset. 2nd ed. (New York: John Wiley & Sons, Inc., 2002), 
chapter 20. 
7Using cash flow or earnings as the sole value driver will usually undervalue 
the low cash flow/high sales business in these circumstances. In these cases, 
the buyer has only to contain and control costs without the added burden 
of necessarily increasing sales. Therefore, there is compensable value in 
having a certain level of sales, even if the commensurate profits do not 
currently exist. 
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31,479 
13,563 

43.1% 

Table2 
Set-up Data for Ratio Model 

x variable 

31,479 
4,714 

15.0% 

y variable 
Transaction no. EBITDNrevenue Price/revenue 

I 0.220 1.546 
2 0.119 0.833 
3 0.096 0.787 
4 0.097 0.782 
5 0.068 0.790 
6 0.144 1.054 
7 0.107 0.791 
8 0.125 0.862 
9 0.022 0.627 
IO 0.210 0.811 
ii 0.053 0.573 

the formula for transaction number five would be as 
follows: .4859 + 3.2612 * .068 = .7064 * 42,705 = 30,167. 
Figure 1 is a scattergraph showing actual price paid on the 
y-axis and predicted price paid on the x-axis. While the 
results we have achieved so far are an improvement over 
the use of revenue alone, a glance at Figure 1 indicates a 
data point in the upper right comer that is obviously an 
outlier. Rather than removing it from the data set, let's try 
another procedure to pull it and the other data points in 
closer to the trend line. 

The data sets of sales transactions that are available 
to us by way of Standard Industrial Classifications (SIC) 
Code Numbers and North American Industrial Classifica­
tion System (NAICS) Code Numbers are rarely distrib­
uted in such a manner that the application of simple linear 
regression will give us a relevant and reliable answer. 
This is because the data sets are (a) hardly ever linear, 
(b) infrequently homogeneous as to variance (the larger 
the x variable, the greater, or smaller, the dispersion about 
the regression line), and (c) not often normal, or even 
symmetrical. If the data are linear, then we can proceed to 
use simple linear regression without having to resort to 
more complex models, i.e., we can stick with the basic 
tools that Excel provides us. The reason that homogeneity 
and normality, or at least symmetry, are good things is 
beyond the scope of this article, but suffice it to say that 
without these qualities, standard statistical tests and 
confidence intervals will not be reliable, nor will you be 
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Table 3 
Summary Output for Ratio Model 

Regression Statistics Transformed Back-transformed 

Multiple R 0.760 0.981 
Rz 0.578 0.962 
Standard error 0.177 7,305 
CoV 20.6% 23.2% 
Observations 11 11 

AN OVA 

df SS 

Regression 1 0.387 
Residual 9 0.282 
Total 10 0.669 

Coefficients Standard error 

Intercept 0.4859 0.119 
EBITDA/revenue 3.2612 0.929 

EBITDA/revenue 
Transaction No. Intercept Coefficient 

l 0.4859 3.2612 
2 0.4859 3.2612 
3 0.4859 3.2612 
4 0.4859 3.2612 
5 0.4859 3.2612 
6 0.4859 3.2612 
7 0.4859 3.2612 
8 0.4859 3.2612 
9 0.4859 3.2612 
10 0.4859 3.2612 
11 0.4859 3.2612 

able to explain away the variation in your data as noise, or 
ordinary and expected random error: simple tests will 
make it apparent that your model is deficient. 

Fortunately, to fix these three problems we only need 
one procedure, and that is transformation of either or both 
the x and y variables. This is true because data that are not 
normally distributed are also often neither linear nor 
homogeneous. Thus, transformation provides a simple 
way both to fix statistical problems (nonsymmetrical 
and heterogeneous distributions) and to fit curves to data 
(curvilinear regression). 

Transformation of variables is not new to business 
valuation, as both Jay Abrams and Roger Grabowski, 
in their work with the Ibbotson and Duff & Phelps data­
bases, respectively, have shown. In both instances, the x 
variable, market size, was transformed logarithmically to 
straighten out the curved distribution of data points that is 
generated when discount rates are plotted against market 
size. However, a transformation by logarithms, which 
converts changes in data from absolute changes into per­
centage changes, does not work as well with the transac­
tion data sets as transformation by exponents, since we 
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MS F Significance F 

0.387 12.333 0.007 
0.031 

t-stat p-value Lower95% Upper95% 

4.080 0.003 0.217 0.755 
3.512 0.007 1.160 5.362 

EBITDA/revenue Revised Revenue ($000) Predicted 
Ratio Multiple Revenue Price ($000) 

0.220 1.2020 61,283 73,661 
0.119 0.8748 62,444 54,629 
0.096 0.7978 61,508 49,074 
0.097 0.8030 60,119 48,273 
0.068 0.7064 42,705 30,167 
0.144 0.9547 32,000 30,549 
0.107 0.8349 26,674 22,270 
0.125 0.8935 8,704 7,777 
0.022 0.5591 5,901 3,300 
0.210 1.1715 3,144 3,683 
0.053 0.6580 3,139 2,065 

can select the exponent that works best in the situation, 
while the logarithm of any number is fixed so that the 
data set at hand may not conform to a logarithmic fix. 
Therefore, because of the flexibility afforded our trans­
formation process by exponents, this option will be the 
transforming process we demonstrate in this article. 

This next procedure entails transforming both the 
x and y variables by raising each of them to its own 
individual power such that the model's SEE is minimized. 
We constrain this optimizing model by making the 
standardized residuals8 sum to zero, as they should in any 
circumstance. The Excel tool we use is Solver, which can 
be added to the Tools drop-down menu by checking the 
Solver box in the Tools, Add-ins menu. 

Table 4 shows the setup data, Solver results, and fore­
casted price that is calculated using the same procedures 
demonstrated on Table 3 and discussed already, except 

8 A residual is the difference between actual price paid and predicted 
price paid. To standardize a residual, we divide it by the SEE, the standard 
deviation about the trend line. 
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Figure 1 
Ratio Model 

Table 4 

$50,000 

Outlier-• 

• 

$60,000 $70,000 $80,000 

Set-up Data for Transformation Model 

Exponents 

92.99555831 4.79386269 ($000) ($000) 
Transaction No. EBITDNrevenue Price/revenue Revenue Forecasted Price Standardized Residual 

1 5.9223E-62 8.084 61,283 94,762 (0.00) 
2 l.3279E-86 0.416 62,444 51,234 (0.27) 
3 l.6394E-95 0.317 61,508 50,466 0.74 
4 7.4355E-95 0.307 60,119 49,327 0.83 
5 l.6129E-109 0.323 42,075 35,039 0.46 
6 4.5843E-79 1.284 32,000 26,255 (2.67) 
7 5.5763E-91 0.325 26,674 21,886 0.28 
8 l.0291E-84 0.490 8,704 7,142 (0.13) 
9 5.0865E-154 0.107 5,901 4,842 0.41 
10 l.0372E-63 0.366 3,144 2,745 0.07 
11 l.6030E- ll 9 0.070 3,139 2,575 0.28 

Residual sum = (0.0) 
SEE= 2,795 CoV= 8.9% 
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Figure 2 
Ratio Model, Transformed 

that we must employ a back-transformation process9 for 
this model. 

Once again, we create a scattergraph with actual price 
paid on the y-axis and predicted price paid on the x-axis 
and show the results in Figure 2. While these results 
are superior to those shown in Figure 1, we still have 
one potential outlier. Transaction six, while not more 
than three standard deviations from the trend line, is still 
greater than 2.6 standard deviations, an outcome we 
would expect only 1 % of the time. 10 

9Since we have transformed the y variable, in order to have our predicted 
price paid result be in natural language, we must back-transform the initial 
result by raising it to the power of (l/4. 79386269). This is the same pro­
cedure involved in squaring the integer 2 to get 4, and then raising 4 to the 
~wer of ( 1/2), or .5, to back-transform it to 2. 
0In a normal (bell-shaped) distribution, the total area under the curve equals 
l 00% probability. One standard deviation from the mean will encompass 
68.26% of the area under curve, leaving 3 l. 74% probability in both tails 
of the curve. Two standard deviations encompass 95.44%, leaving 4.56% 
probability in both tails. Three standard deviations encompass 99.74%, 
leaving .26% probability in both tails, and 2.6 standard deviations 
encompass 99.06%, leaving about 1.0% probability in both tails. 
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Therefore, without showing the setup table, we 
removed transaction six and reran Solver, obtained new 
optimizing exponents while again constraining the stan­
dardized residuals to sum to zero. Forecasted price was 
calculated the same way as shown on Table 3, with the 
addition of the back-transforming procedure. This result­
ed in an SEE of 1,030 and a CoV of 3.3%. The scatter­
graph of actual versus predicted price paid is shown in 
Figure 3, with an attendant R2 of .999. Although the 
increase in R2 over Figure 1 is de rninirnis, the decrease 
in SEE is on the order of 63%, i.e., from 8.9% to 3.3%, 
thereby justifying the removal of transaction six. While 
results this excellent will not often be achieved in prac­
tice, this example indicates the type of superior outcomes 
that the transformed ratio model can accomplish. 

Since the application of RA is almost always an itera­
tive process-the first model chosen is rarely the best 
model-let's apply this process to Hawkins' revenue 
and price paid data set, for pedagogical purposes only, 
because in practice, a revenue-only model would be 
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Figure 3 
Ratio Model, Transformed and Outlier Removed 

ineffective in determining value. We will make attempts 
at devising a model that meets the following criteria: (a) 
highest R2

, (b) lowest SEE, (c) residuals that add to zero, 
and (d) no standardized residual greater than 2.6. The first 
attempt is the regression of price paid against revenue. 
The second attempt is a similar regression but with trans­
action number one removed because it is an outlier-it's 
2.75 standard deviations from the trend line. However, 
this regression, while an improvement over the first, 
produced another outlier-original transaction number 
six has a residual that is 2.69 standard deviations from the 
trend line. Rather than remove it, we have transformed 
both the x and y variables in the manner previously dis­
cussed and demonstrated and run a third regression. This 
transformation process allows us to keep original transac­
tion number six (it is now only 2.17 standard deviations 
from the trend line) and have a higher R2 and a lower SEE 
than the second model. The results of the three models are 
shown in Table 5. 

Next, let's turn our attention to Hawkins' EBITDA and 
price paid data set and explore the issues of outliers and 
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SEE 
CoV 
Rz 

Table 5 
Goodness of Fit Model 

First Attempt 

13,563 
43.1% 

.797 

Second Attempt 

2,946 
11.7% 

.981 

Third Attempt 

2,588 
10.3% 

.986 

influential and leverage points in RA. First, let us define 
our terms. An outlier is any really unusual observation, 
while only influential and leverage points have large 
residuals. Typically, not all outliers are both influential 
and exert leverage. An observation is influential if remov­
ing it would markedly change the trend line. Leverage 
points are those observations that have values far from the 
mean of the x variable. Observations that are far from the 
mean of the y variable are just plain outliers, since they 
are usually not influential in relation to the regression 
results. Only observations that have high leverage and 
are outliers tend to be influential. See Figure 4 for a 
demonstration of these concepts. 
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Figure 4 
Outliers, Influencers, and Leverage Points 

As can be seen on Figure 4, the data point in the south­
east corner of the graph has a tremendous influence on 
both the slope and the intercept of the trend line, and 
it should either be removed and/or investigated further. 
The data point in the northwest corner, while an outlier, 
would have little, if any, effect on the trend line if it were 
removed. The data point in the northeast corner is an 
observation of interest because it has the potential to 
influence the regression outcome. This same situation 
exists in Hawkins' Figure 2, where the distance from the 
average of x of the data point in the northeast corner of the 
chart, which represents transaction number one, causes 
us to question its effect on the trend line. Therefore, we 
run a second regression without that observation in the 
data set, and then test whether the results are statistically 
and practically significant from the original regression. 
Table 6 compares the two regression outputs for those 
items of importance regarding influence and leverage. 

While this comparative table seems to indicate no sub­
stantial difference between the two models, let us exam 
the results of two statistical tests to be absolutely sure. 
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Intercept 
EBITDA coefficient 
SEE 
CoV 
R2 

Table 6 
Regression Output 

Full Model 

Largest standardized residual 

2,686.27 
7.03 

4,714.48 
15.0% 

.975 
2.4 

Model Without 
Trans. No. l 

1,632.17 
7.45 

4,765.39 
18.4% 

.951 
2.4 

The first significance test was a regression model that 
included a dummy variable11 of1 for transaction one and 
a 0 for the other ten transactions. If transaction number 
one is influential, then the t-statistic for the dummy vari­
able coefficient will be more than 2.262, and its p-value 
will be less than 5%. We can see on Table 7 that it 

11 Dummy, or binary, variables are defined as either a 1ora0 and are used 
to measure variables that cannot be stated in quantitative terms of either 
how many or how much, but instead measure qualitative attributes such 
either/or. 
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Table 7 
To Include or Not Include Transaction No. 1. Tests of Significance 

SUMMARY INPUT 

Transaction No. 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

SUMMARY OUTPUT 

Regression Statistics 

Multiple R 
If 
Adjusted R2 

Standard error 
Observations 

ANOVA 

Regression 
Residual 
Total 

Intercept 
EBITDA 
Dummy 

EBITDA 
($000) 

13,457.00 
7,448.00 
5,884.20 
5,845.60 
2,888.10 
4,600.00 
2,854.80 
1,087.90 

132.60 
661.00 
165.70 

0.989 
0.978 
0.972 

4,765 
11 

df 

2 
8 

10 

Coefficients 

1,632.17 
7.45 

(7, 118.85) 
t-Test: Paired Two Sample for Means 

Mean 
Variance 
Observations 
Pearson correlation 
Hypothesized mean difference 
df 
t-stat 
P(T :5: t) two-tail 
t critical two-tail 

Forecast w/ 1 

24,892.53 
351,501,282.95 

10 
l 
0 
9 

(0.736) 
0.480 
2.262 

Dummy 

l 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

SS 

7,954,516,286 
181,671,756 

8,136,188,043 

Standard Error 

2,410.54 
0.60 

7,916.17 

Forecast w/o l 

25,150.50 
394,265 ,896.24 

10 

fails those tests, meaning that the dummy variable, and 
by inference, transaction number one, is statistically 
insignificant to the regression model. 

The second test of significance is to match up the 
regression predictions for the other ten transactions 
as predicted by the two models and test whether their 
combined differences are statistically significant. We use 
Excel's t-test for paired samples, 12 the output of which is 

12The data are paired because each of the two predicted prices for each 
transaction is based on the same amount of EBITDA. 
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($000) 
Price 

94,769 
52,000 
48,400 
47,000 
33,740 
33,715 
21,100 

7,500 
3,700 
2,550 
1,800 

MS F Significance F 

3,977,258,143 175.14 2.4858E--07 
22,708,970 

t-stat p-value Lower95% Upper95% 

0.677 0.517 (3,926.54) 7,190.89 
12.500 0.000 6.08 8.82 
(0.899) 0.395 (25,373.60) l 1,135.89 

shown on the bottom half of Table 7. If there were a sta­
tistically significant difference between the two different 
sets of predicted selling prices, then the !-statistic would 
have been greater than 2.262, and the p-value would have 
been less than 5%. The null hypothesis of no difference 
between the predicted values cannot be rejected, meaning 
we accept it and conclude that transaction number one 
can stay in the regression model-we gain nothing by 
removing it. Of course, there was also no practical sig­
nificance to the change in both the slope and the intercept 
of the trend line brought about by dropping transaction 
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number one from the regression model. Therefore, if 
an outlier lies on the plane of the trend line, no matter 
its distance from the average of x, it should stay in the 
model. 

While there is more we can say about these regression 
models, especially about residual diagnostics and reme­
diation techniques, let us turn our attention to the second 
half of Hawkins' article, the section dealing with account­
ing for active versus passive appreciation of a nonmarital, 
or "separate" asset. However, before we deal specifically 
with that topic and the application of RA to it, let's use the 
data in Hawkins' Table 6 as a basis for forecasting reve­
nues using RA for a valuation or lost-profits assignment. 13 

Assuming that we have access to data from the National 
Association of Home Builders and various state and 
federal government agencies such that we have accurate 
forecasts for national housing starts for the years after 
2006, and if we have an accurate RA model, then we can 
forecast post-2006 revenues for our subject company. So, 
let's build that accurate model, recognizing that it will be 
a combined model, i.e., it will contain elements of both 
time-series and explanatory forecasting models. 14 

13Sample size is always an issue in RA, and the way it is dealt with depends 
on whether one is (a) testing a hypothesis (e.g., eating two pounds of ruta­
baga a day for six months will increase one's score on a standardized test) 
or (b) predicting or forecasting (e.g., what might a business' value be based 
on a given amount of cash flow). 

For hypothesis testing, the researcher wants a sample size large enough 
so that a type II error is not committed (failing to reject the null hypothesis 
when logic indicates it should be) but not so large that a type I error is 
committed (rejecting the null hypothesis when there is no reason to do so). 
In terms of the courtroom, the researcher neither wants to convict the inno­
cent nor free the guilty. Since the number of observations, or cases, in the 
researcher's experiment, needed to avoid these errors is unknown, there 
are as many rules of thumb that suggest sample size as there are statistical 
textbook authors. 

For the valuation analyst, choice of sample size is rarely an option. The 
data available are a given (e.g., ten years of sales history, 25 observations in 
a transaction database, etc.), and more data are rarely available in order to 
get the RA model to perform better. However, we do have a simple test that 
enables us to determine if we have a sufficiently large sample. The p-value 
of the x-coefficient's t-statistic is a function of, among other things, sample 
size. So, if the p-value is .05 or less, the x-coefficient will be statistically 
significant, i.e., different from zero, whether the sample size is 11, 18, 
or JOO. Therefore, if the sample size is too small, the analyst will know it 
immediately-the p-value will be greater than .05. If it is less than or equal 
to .05, the model is good to go, regardless of how few observations there are 
in the sample. 

In either case, a model's ability to account for the data should ultimately 
be evaluated by examining the deviations between predicted and observed 
values. Sample size should not be the factor determining the success 
or failure of the model. Sample size reflects the resources available to the 
researcher and the valuation analyst; it does not reflect the verisimilitude of 
the model. William Gossett, the inventor of the t-distribution, worked at 
Guinness Brewery as head of quality control and used sample sizes of three 
to five observations. 
1"Tbe type of data used in the valuation models discussed above was cross­
sectional, which refers to data collected by observing many subjects, such 
as company data, at the same point of time, or without regard to differences 
in time. For the succeeding section, we will focus on time series, which is 
a sequence of observations that are ordered in time. If observations are 
made on some phenomenon throughout time, it is most sensible to display 
the data in the order in which they arose, particularly since successive 
observations will probably be dependent. 
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The first thing one should do when given a data set of 
observations is to graph the data, the y variable against 
each x variable. See Figure S for those graphs based on 
Hawkins' Table 6. Figure SA indicates that the relation­
ship between revenue and time, in this case years, is not 
linear, but curvilinear, and while Figure SB shows a linear 
trend, there is substantial noise, or random error, in the 
data. While annual housing starts for the first six years 
range from 894,9020 to 1,146,300, Woodco's revenues 
are stuck in a rut-they range only from $12,100 to 
$16,900. This pattern of nonlinearity, or noise, is repeated 
for subsequent years through 2003, but to a much lesser 
degree. One minus R2 value for each model indicates 
the unexplained variance, or unaccounted noise, in each 
model, corroborating what our eyes tell us--our RA 
forecasting model will have to account for curvilinearity 
and noisy data. 

For expediency's sake, let us concede that the models 
listed in Table 8, while presenting reasonably good 
metrics, are deficient for one or more reasons, including 
serial correlation15 and nonlinearity in the residuals. 16 

That leaves just two models that we need to compare 
and contrast in detail-a transformation of model three 
and a second-degree polynomial, or quadratic model, 
using only time and time-squared as the x ·variables. 
The setup data and summary output information for the 
quadratic model are shown on Table 9. 

While the output metrics on Table 9 all look quite 
good-high R2

, low CoV, and statistically significant 
p-values for all the coefficients-there is a fly in the oint­
ment. Examining the two charts in Figure 6, we note that 
there is no serial correlation per Figure 6B, but there is a 
problem showing in Figure 6A. One of the residuals does 
not fit inside the imaginary box-we do not have random 
dispersion without any outliers or patterns. This tells us 
that our model is missing something, and we need try 
again, this time with a transformation process utilizing 
both years and national housing starts in a combined 
time-series and explanatory model. The setup data and 
summary output information for this model are shown on 
Table 10. 

Not only are the output metrics better than those of the 
quadratic model in all respects, but also the residuals in 
Figure 7 A illustrate almost perfect random dispersion, 
and the residuals in Figure 7B demonstrate a lack of 
serial correlation. Table 11 tabulates the results of the 

15Serial, or auto, correlation exists when the residuals are correlated over 
time. It is often found in time-series data when one period's value is related 
to a preceding period's value. It is usually not a problem with cross­
sectional data, unless those data are ranked by size. 
16when the residuals are plotted against the fitted values, they should form 
a square or rectangle around their mean value of zero. The distribution 
of the residuals in this square or rectangle should be random, without any 
patterns or outliers presenting. 
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(A) Scattergraph - Revenue vs. Time 
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X1 variable 
X2 variable 
SEE 
CoV 
R2 
l -R2 

Table 8 
Comparative Data and Statistics 

Model 1 

Housing starts 

9,083 
26.6% 

.8281 

.1719 

Model2 

Time 

7,748 
22.7% 

.8749 

.1251 

Model 3 

Housing starts 
Time 
5,850 

17.1% 
.9332 
.0668 

contest between the two models. The three line-fit plots in 
Figure 8 graphically show how well the combined model 
fits the data, as well as giving a preliminary insight into 

which of the two x variables is more important than the 
other. 

For a multiple regression model like the combined 
model we have just demonstrated, the analyst often wants 
to know which of the variables is the most important, both 
relatively and absolutely, i.e., he or she wants to know its 
effect size. A beta coefficient, or weight, of an x variable 
measures the relative importance of that variable against 
the others in a multiple regression model. It is the average 
amount the y variable increases when the x variable 
increases one standard deviation and the other x variables 
are held constant. The beta weight formula for any 
particular x variable is: x-coefficient * standard deviation 
of the x variable/standard deviation of the y variable. 

Table 9 

SUMMARY INPUT 

Year 

1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 

Year2 

3,956,121 
3,960,100 
3,964,081 
3,968,064 
3,972,049 
3,976,036 
3,980,025 
3,984,016 
3,988,009 
3,992,004 
3,996,001 
4,000,000 
4,004,001 
4,008,004 
4,012,009 
4,016,016 
4,020,025 
4,024,036 

SUMMARY OUTPUT 

Regression Statistics 

Multiple R 
R2 
Adjusted R2 

Standard error 
CoV 
Observations 

ANOVA 

Regression 
Residual 
Total 

0.9878 
0.9758 
0.9726 

3,517 
10.3% 
18 

df 

2 
15 
17 

Coefficients 

Intercept 1,085,180,317.29 
Year (l,090,235.75) 
Year2 273.83 

Woodco Predicted Revenues 
Time-Series Analysis-Quadratic Model 

Revenues ($000) 

12,100 
14,600 
14,700 
15,400 
14,500 
16,900 
21,300 
26,800 
26,000 
30,000 
29,500 
33,100 
45,900 
50,400 
47,100 
63,400 
69,100 
83,400 

SS 

7,494,332,549 
185,578,562 

7,679,911,111 

Standard Error 

138,042, 739 .49 
138,216.16 

34.60 

MS F 

3,747,166,275 303 
12,371,904 

t-stat p-value 

7.861 0.000 
(7.888) 0.000 
7.915 0.000 
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Significance F 

7.47803E-13 

Lower95% Upper95% 

790,949,002 1,379,411,633 
(l ,384,837) (795,635) 

200 348 
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(A) Residuals versus Fitted Values 
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Table 10 
Woodco Predicted Revenues 

Combined Time-Series Analysis & Explanatory Model 

SUMMARY INPUT 
Exponents 

1.03249 -1.52424 -0.20912 

Natural Transformed 

x x y x x y 
Year Time Starts Revenue ($000) Time Starts Revenue 

1989 1 1,146,300 12,100 1.000 5.810E-10 0.140 
1990 2 1,081,400 14,600 2.046 6.350E-10 0.135 
1991 3 1,003,400 14,700 3.109 7.l 17E-10 0.134 
1992 4 894,900 15,400 4.184 8.474E-10 0.133 
1993 5 840,400 14,500 5.268 9.325E-10 0.135 
1994 6 1,030,100 16,900 6.360 6.838E-10 0.131 
1995 7 1,125,600 21,300 7.457 5.974E-10 0.124 
1996 8 1,198,400 26,800 8.559 5.429E-10 0.119 
1997 9 1,076,300 26,000 9.666 6.396E-10 0.119 
1998 10 1,161,000 30,000 10.777 5.698E-10 0.116 
1999 11 1,133,600 29,500 11.891 5.909E-10 0.116 
2000 12 1,271,400 33,100 13.009 4.961E-10 0.113 
2001 13 1,302,500 45,900 14.130 4.782E-10 0.106 
2002 14 1,230,900 50,400 15.253 5.212E-10 0.104 
2003 15 1,273,200 47,100 16.380 4.951E-10 0.105 
2004 16 1,358,500 63,400 17.508 4.485E-10 0.099 
2005 17 1,499,000 69,100 18.639 3.860E-10 0.097 
2006 18 1,610,500 83,400 19.772 3.460E-10 0.094 

SUMMARY OUTPUT 

Regression Statistics 

Transformed Back-Transformed 

Multiple R 0.99276 0.9927 
R2 0.98557 0.9855 
Adjusted R2 0.98364 0.9835 
Standard error 0.00188 2,731 
CoV 1.59% 8.00% 
Observations 18 18 

AN OVA 

df SS MS F Significance F 

Regression 2 0.003612588 0.001806294 512.1541988 l.56712E-14 
Residual 15 5.29028E-05 3.52686E-06 
Total 17 0.003665491 

Coefficients Standard Error t-stat P-value Lower95% Upper95% 

Intercept 0.131 0.004 33.638 0.000 0.123 0.140 
Time (0.002) 0.000 (17.873) 0.000 (0.002) (0.002) 
Starts 14,882,064.161 4,861,054.118 3.061 0.008 4,520,966.201 25,243,162.120 

RESIDUAL OUTPUT 

Back-transformed 
Transformed Predicted Revenue 

Observation Predicted Revenue Residuals ($000) 

I 0.1379 0.0021 13,023 
2 0.1364 -0.0018 13,705 
3 0.1353 -0.0008 14,278 
4 0.1349 -0.0018 14,437 
5 0.1339 0.0010 15,005 
6 0.1278 0.0028 18,732 
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Table 10 
Continued 

RESIDUAL OUTPUT 

Observation 
Transformed 

Predicted Revenue Residuals 

Back-transformed 
Predicted Revenue 

($000) 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0.1241 
0.1209 
0.1200 
0.1165 
0.1144 
0.1106 
0.1079 
0.1061 
0.1033 
0.1001 
0.0967 
0.0937 

0.0003 
-0.0024 
-0.0006 
-0.0007 

0.0018 
0.0029 

-0.0019 
-0.0022 

0.0021 
-0.0011 

0.0005 
-0.0002 

Another effect size measure is the elasticity of the x vari­
ables. Conventionally, the elasticity of an x variable in a 
model is defined as the percent change in the y variable 
for a one percent change in the x variable. The elasticity 
formula for any particular x variable is: x-coefficient * 
average of the x variable/average of they variable. A third 
effect size measure is level importance, which contrasts 
the "potential" influence of the raw x-coefficient with its 
"actual" influence. The formula for level importance is: 
x-coefficient * x variable mean. It is understood that the 
larger the x-coefficient is, the more the y variable will 
change for each unit increase in the x-coefficient, but the 
smaller the x variable average is, the fewer actual unit 
changes will be expected. By taking both the size of 
the x-coefficient and the size of the average value into 
account, level importance is a better indicator of expected 
actual influence of the x variable on the y variable. A 
review of Table 12 reveals that time has larger values than 
housing starts for all three effect size measures, indicating 
that it is the more important of the two x variables by a 
factor of at least two to one. However, this does not mean 
we should remove housing starts from the model. On the 
contrary, we have seen that time alone, while a necessary 
ingredient in the model, is not sufficient by itself to pass 

X1 variable 
X2 variable 
SEE 
CoV 
Ri 
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Table 11 
Comparative Data and Statistics 

Quadratic Model 

Time 
Time2 

3,517 
10.3% 

.9758 

Time series & 
Explanatory Model 

Time 
Housing starts 

2,731 
8.0% 

.9855 

21,529 
24,394 
25,344 
29,135 
31,786 
37,415 
42,105 
45,625 
51,928 
60,195 
70,948 
82,706 

all the required tests. It is the combination of the two vari­
ables, their joint effect, joined with the transformation 
process, which makes the model so powerful. 

Having used Hawkins' Woodco data to explore various 
forecasting models, let us now tum our attention to the 
purpose for which Hawkins introduced the data set-the 
segregation of growth in value into passive and active 
categories. The fundamental inference that Hawkins 
draws from regression analysis and brings to bear on this 
issue is that the R2 statistic "explains a significant percent­
age of the variation in Woodco's results," or as he puts it 
another way, "82.8% of variations in Woodco revenues 
[can be] explained by changes in national homebuilding 
activity." Let's contrast these two statements with a quote 
from a statistics 101 text book17

: "The more closely x and 
y are linearly related, the more the variability in the y­
values can be explained by variability in the x-values .... " 
Thus, it is variability that is explained, or accounted for, 
not some basic relationship. Perhaps this will be made 
clearer if we demonstrate just what the textbook quote 
really means in a statistical, rather than a literal sense. 
The more that y is a strict function of x, the more their 
individual variances will match up, or covary, and the 
more strongly they will be correlated. For example, if we 
look at Table 13, we see the price and EBITDA data sets 
that were first introduced in Table 7. Without creating a 
scattergraph, we can't tell from just looking at the raw 
data whether or not there is a relationship between the 
x and y variables. However, if we common-size the data 
by standardizing 18 it, we make it easier to see if the two 

170tt, L. and Mendenhall, W. Understanding Statistics. 5th ed. (Boston: 
PWS-Kent Publishing, 1990), 421. 
18Standardizing a value, or creating a z score, is accomplished by subtract­
ing the value from the average of the data set and dividing the result by the 
standard deviation of the data set. 
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Table 12 
Combined Time-Series Analysis & Explanatory Model 

Beta Coefficients, Elasticities, and Level Importance 

Year Revenue (Y) Starts Time 
1989 0.1400 5.8100E-10 1.0000 
1990 0.1346 6.3497E-10 2.0456 
1991 0.1344 7.1173E-10 3.1090 
1992 0.1331 8.4736E-10 4.1843 
1993 0.1348 9.3253E-10 5.2684 
1994 0.1306 6.8380E-10 6.3597 
1995 0.1244 5.9736E-10 7.4568 
1996 0.1186 5.4294E-10 8.5592 
1997 0.1193 6.3957E-10 9.6660 
1998 0.1158 5.6982E-10 10.7768 
1999 0.1162 5.9095E-10 11.8913 
2000 0.1134 4.9614E-10 13.0090 
2001 0.1060 4.7820E-10 14.1298 
2002 0.1039 5.2124E-10 15.2534 
2003 0.1054 4.9508E-10 16.3796 
2004 0.0990 4.4848E-10 17.5082 
2005 0.0973 3.8601E-10 18.6392 
2006 0.0935 3.4602E-10 19.7723 
Mean 0.118 5.83511E-10 10.278 
Standard deviation O.D15 0.000000000 5.909 
Beta coefficient 0.149 -0.873* 
Elasticities 0.074 -0.189t 
Level importance 0.01 (0.02) 

Constant Starts Time 
Coefficients 0.131408657 14,882,064 -0.0022 

* One standard deviation change in time will result in a -.873 standard deviation change in revenue (Y). 
t One percent change in time will result in a -.189% change in revenue (Y). 

data sets compare, or covary. A cursory examination of 
the two columns of standardized values indicates that 
they closely match up, a conclusion verified by the chart 
in Figure 9. If the two data sets perfectly covaried, each of 
the two columns in each pair would be of equal length, 
and R and R2 would each be 1. However, they are not 1, 
but .9876 and .9754, respectively, which can be computed 
from the standardized values. By multiplying each pair of 
standardized values, we find the amounts in the product 
column on Table 13. Summing this column and dividing 
by 10 (n - 1) gives us the coefficient of correlation, 
R, which, when raised to the power of 2, results in an 
R2 value of .9754. 

A second way of computing R2 is to first calculate total 
sum of squares, or total variance, by subtracting each 
individual value of the y variable from the average of y 
and squaring the results, and then summing the eleven 
squared values, which gives 8,136,188,043. The second 
step is to compute the regression sum of squares by sub­
tracting each individual predicted value from the average 
of y and squaring the results, and then summing the 
eleven squared values, which gives 7,936, 151,449. If 

Business Valuation Review - Summer 2009 

these two numbers matched perfectly, then R2 would be 1, 
i.e., the variance, or degree of dispersion about the mean, 
of the actual values will match the variance of the pre­
dicted values. However, they do not, so the ratio of TSS/ 
RSS gives us .9754. What this means is that 97.54% of 
the total variance is accounted for, or matched, by the 
variance of the predicted values. Notice in Table 13 how 
the covariance of price and predicted price are exactly the 
same as that for price and EBITDA. This is another way 
of showing that R2 indicates the fraction of the variation 
in y (price in this case) that is accounted for by the 
model. 

Some of the confusion surrounding the term "explain" 
arises from two sources. The first is a literal interpretation 
of the term. As we have seen, the regression sum of 
squares RSS is often called the "explained variation" in y, 
and the residual, or error, sum of squares ESS is called the 
"unexplained variation." The coefficient R2 then is inter­
preted in terms of the proportion of the total variation in y 
(TSS) that has been "explained" by x. Unfortunately 
this terminology frequently is taken literally and, hence, 
misunderstood. Remember that in a regression model, 

Page 83 



j;;i 
~ 

QQ 
~ 

<OJ 
1-.J 
0 
0 
~ 
> 
3 
t'D 
"'l ;:;· 
o.i = 
IJ'J 
0 
I") 

;:;· --< 
0 -> 

""C 
"C 

"'l 
o.i 
iii" 
t'D 
"'l 
(ll 

Trans no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
l l 

Sum 
Average 
Standard 

deviation 
Average (n - 1) 

=R 
Average (n - q 

squared= R-
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13,457 94,769 
7,448 52,000 
5,884 48,400 
5,846 47,000 
2,888 33,740 
4,600 33,715 
2,855 21,100 
1,088 7,500 

133 3,700 
661 2,550 
166 1,800 

4,093 31,479 

4,005 28,524 

Table 13 
Analysis of Variance and Derivation of Rand R2 

($000) Variance 
Standardized 

Average Predicted Total Sum of Regression 
EBITDA Price Product Price Price Squares Sum of Squares 

2.34 2.22 5.19 31,479 97,349 4,005,566,564 4,338,763,548 
0.84 0.72 0.60 31,479 55,079 421,092,786 556,928,605 
0.45 0.59 0.27 31,479 44,078 286,304,858 158,731,673 
0.44 0.54 0.24 31,479 43,807 240,887 ,331 151,963,470 

(0.30) 0.08 (0.02) 31,479 23,002 5,110,066 71,859,751 
0.13 0.08 0.01 31,479 35,045 4,997,663 12,710,983 

(0.31) (0.36) 0.11 31,479 22,768 107,733,077 75,886,051 
(0.75) (0.84) 0.63 31,479 10,339 575,014,240 446,917,103 
(0.99) (0.97) 0.96 31,479 3,619 771,698,095 776,202,755 
(0.86) (1.01) 0.87 31,479 7,336 836,913,340 582,904,579 
(0.98) (1.04) 1.02 31,479 3,852 880,870,022 763,282,931 

9.88 8, 136, 188,043 7,936,151,449 

0.9876 Regression SS/total SS= 0.9754 

0.9754 

Price ($000) 

Predicted Actual 

97,349 94,769 
55,079 52,000 
44,078 48,400 
43,807 47,000 
23,002 33,740 
35,045 33,715 
22,768 21,100 
10,339 7,500 
3,619 3,700 
7,336 2,550 
3,852 1,800 

346,274 346,274 
31,479 31,479 

28,171 28,524 

Standardized 

Predicted 
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Comparative Variances 

there is no implication that y necessarily depends on x in 
a causal or explanatory sense. This translates into the 
well-known admonition that correlation does not equal 
causation. 

The second source of confusion is the conflation of 
the terms causation and prediction. Put another way, all 
causation models are prediction models, but prediction 
models are not necessarily causation models. For exam­
ple, while we can predict revenue with time as the inde­
pendent variable, and we can predict value using EBITDA 
as the independent variable, we would never assert that 
time drives or "causes" revenue, but we are very comfort­
able saying that a company's EBITDA drives, or "causes" 
its value. Causation, or explanatory, models attempt to 
match a theory with data and explain how x causes y. 
Prediction models have no such agenda- they merely 
wish to use independent variables that are associated with 
the dependent variable in such a manner as to make the 
former valid predictors of the latter. They do not "explain" 
anything more than the degree of covariance between 
and among the variables, i.e., the degree to which y and x 
move in tandem. 
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There are additional problems associated with the 
attempt to use the strength of the relationship between 
national housing starts and company revenues as a proxy 
for passive appreciation in value. The first is that revenue 
alone should never be a value driver. The better value 
driver is cash flow to equity or invested capital, because 
much that happens between the top line and the bottom 
line reflects management's ability to cope with exogenous 
forces. A reliance on revenue alone diminishes manage­
ment's role in value creation. A second problem is that the 
effect size analysis of the combined, transformed model 
output indicates that time is the substantially more impor­
tant predictor variable. This makes housing starts a neces­
sary, but not sufficient variable for "explaining" revenue. 
Hawkins himself has definitively addressed the third, 
and last problem. 19 In that article, he argues cogently and 
convincingly that the multiplicity of factors that create 

19George B. Hawkins, "Active versus Passive Appreciation-The Same Old 
Inflation Argument-But is It Valid?" CCH Business Valuation Alert 5(3) 
(April 2004 ). 
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value cannot be overridden by "simplistically ascrib[ing] 
emphasis to one factor such as inflation." If he had 
substituted "national housing starts" for inflation, his 
conclusions would not have changed. 

Figure lOA-C presents three scatterplots that "explain" 
the relationship between revenue and nominal Gross 
Domestic Product (GDP), the Consumer Price Index 
(CPI) and inflation, respectively. The fact that inflation, 
or any other exogenous factor that can be associated 
with revenue growth is now dressed up in the guise of 
RA cannot serve to negate Hawkins' previous arguments. 
None of these factors drives revenue, and revenue does 
not drive value. RA is a powerful tool for exploring rela­
tionships-it cannot prove causation. At best, in some 
circumstances, it can demonstrate it. The attempt to 
exploit R2 as a measure of passive forces is a misuse of 
RA. 

The concluding section of this article deals with Trout's 
letter to the editor regarding the Hawkins' article and its 
methodology and tools. As to methodology, I have no 
quarrel with the procedures broadly outlined in the letter 
that Trout used to deal with curvilinearity and serial cor­
relation. I also agree with his finding that housing starts is 
a less important independent variable than time. What I 
disagree with is his assertion that Excel is not up to the 
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task of performing the necessary statistical analysis that a 
"real" statistical program can carry out. It is true that the 
tools that come with Excel's Analysis ToolPak and the 
statistical functions that are accessed through the Paste 
Function button are inadequate. However, there is avail­
able a host of freeware add-ins,20 very inexpensive add­
ins that can be purchased, 21 and CD-ROMs that come 
with textbooks22 that contain all sorts of analytical tools 
included with the price of the textbook. Also, the stand­
alone programs do not come with an optimizer like 
Solver. Unlike the standalone programs, which can cost 
up $2,500, Excel is a sunk cost-the marginal cost, if any, 
of the add-ins is de minimis. In fact, all of the analysis for 
this article was done with Excel and its add-ins. 

Regression analysis is a tool that should find its way 
into every valuation analyst's toolkit. It can be used to 
determine value under the market approach, and it can be 
used to forecast sales, cost of sales, and overhead costs 
under the income approach. However, its power is direct­
ly related to its proper use. An approach that always 
defaults to simple linear regression of y against x will 
only coincidentally give a proper response. A rigorous, 
time-consuming, analytical process that tests various 
models is the only way to get a result that will stand up 
in court. 

2°For example, including but not limited to: Essential Regression, Gerry's 
Stats Tools. 
21 For example, including but not limited to: Analyze-it, SigmaXL, and 
WinSTAT. 
22For example, including but not limited to: Managerial Statistics, Data 
Analysis with Microsoft Excel. 
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